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Abstract

This note describes test problem for MacBurn which illustrates its per-
formance. The source is centered inside a cylinder with axial-extent-to-
radius ratio s.t. each end receives 1/4 of the thermal energy. The source
(fireball) is modeled as either a point or as disk of finite radius, as de-
scribed by Marrs et al [2]. For the latter, the disk is divided into 13 equal
area segments, each approximated as a point source and models a partially
occluded fireball. If the source is modeled as a single point, one obtains
very nearly the expected deposition, e.g., 1/4 of the flux on each end and
energy is conserved. If the source is modeled as a disk, both conservation
and energy fraction degrade. However, errors decrease if the source radius
to domain size ratio decreases. Modeling the source as a disk increases
run-times.

1 Test problem

This note accompanies the distribution of the computer code MacBurn that
mpdels thermal energy deposition on a landscape/cityscape due to a nuclear
airburst. We hope the note helps users understand what MacBurn does. Unless
stated otherwise, all lengths are in meters.

An instructive example of MacBurn’s performance is found by computing its
thermal energy deposition on the interior of a cylinder with radius R and axial
extent Z. Using configuration factors, Siegel & Howell [3] p.849 #38, it can be
shown that for the ratio Z/R =

√
4/3, if a diffuse spherical source is centered

inside a cylinder, half the energy is deposited on the walls and one quarter on
each of the ends.

To demonstrate MacBurn’s performance, MacBurn’s distribution contains an
analogue of program citify, viz., the code cylinder, that constructs a cylin-

∗This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

1



1 TEST PROBLEM 2

drical domain. After generating the domain, cityray models thermal emission
of a source inside. Once all programs are compiled, the cylindrical domain is
generated as follows. Assuming one runs in a subdirectory, one level down from
where the executables reside, the command:

../cylinder cylout i j k radius height kt z0 flg

generates a cylindrical domain where

cylout (char) = name of the output model

i (int ) = number of degrees per division in the mesh

j (int ) = Number of divisions along radial axis; dR = rad/j

k (int ) = Number of divisions (-1) along height; dZ = hit(k-1)

rad (dbl) = radius of cylinder (m)

hit (dbl or int) = axial extent of cylinder (m)

kt (dbl) = yield (kt)

z0 (dbl or int) = HOB (m)

flg (int) = 0 for non-linear, any other integer for linear

Thus,

../cylinder cylout 9 10 21 173.205 200 1.0 100 1

makes a cylinder of radius R = 173.205 and axial extent Z = 200. The azimuthal
angle is discretized into segments of width 9 degrees (hence, 40 in all); the radial
(axial) direction into 10 (20) uniform widths. The source energy is Y = 1.0 kt
and is initially centered at h = 100 above the ground plane. The final argument
flg allows nonuniform gridding. We always set it to 1 to get a uniform grid.

We perform three tests. The first two use the above domain. Test1 is run
using the command

../cityray -command cmda -timings

where the input command file cmda is

input ../cylout.silo

output nucyl01

ndumps -10

xy 0.,0.

z0 100

yield 1.

zratemult 0.0

method raytrace

# use new power function

PowerFun 1

RadiusTime 0.0
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Thus, the test models a point source (method raytrace) centered in the cylin-
der; the source strength, yield = 1 kt (1012 cal.) Ten nonuniform time steps
(ndumps -10) emit approximately the same energy. Total emitted energy should
be 80% of the yield times the thermal partition (35%), i.e, 0.28 · 1012 cal, Glas-
stone and Dolan [1]. The source is stationary (zratemult 0.) For this problem,
parameter RadiusTime is redundant since the source is modeled as a point.

2 Results

Results are analyzed using VisIt. We should expect errors of at least 0.25%
since the domain is not a true cylinder due to discretization. The ratio of areas
of a true cylinder to the numerical domain is

4.0615e+05/4.0515e+05 = 1.0025

The sum of the total energy deposited is 0.278718 · 1012 cal, which gives a
relative error of 2.8/2.78718 - 1. = 0.0046, i.e., less than 0.5%. Lastly, the sum
of the energy deposited on each end is 0.0695719 · 1012 cal. Hence, each end
receives 0.0695719/0.278718 = 0.2496 instead of 0.25, i.e., a 0.16% error. Given
the coarseness of the discretization, results are excellent

For Test2, the above command file is modified; method raytrace is replaced
with raytrace_disk, i.e., instead of a point, the source is modeled as a sta-
tionary disk of radius 30 m, as described in Marrs et al [2]. The disk radius is
fixed since RadiusTime 0. For this case, the sum of the total energy deposited
is 0.257818 · 1012 cal, which gives a relative error of 2.8/2.57818 - 1. = 0.086,
i.e., 8.6%. (We discuss the 8.6% error at the conclusion of Section 3.) The sum
of the energy deposited on each end is 0.0628724 · 1012 cal. Hence, each end
receives 0.0628724/0.257818 = 0.2439 instead of 0.25, i.e., a 2.5% error.

The Test2 results for total energy, illustrate a “feature” of the Marrs et al
scheme that approximates a sphere with a disk. A disk is a good approximation
to a sphere of the same radius if the source is far from the absorbing surface.
However, for a surface near the source, the approximation degrades. The effect
is similar to a person standing on the earth’s surface; she cannot see beyond the
horizon, a distance is significantly less than the earth’s radius.

In the above tests, the domain size implies that a true spherical source (of
radius 30 m) would have its edge only 70 m from each end. Hence, the edge
centers should “see” a disk of smaller radius, viz., 28.19 m. But, if the source
radius is kept fixed at 30 m and the domain dimensions increased, the disk
approximation should improve.

To confirm the hypotheses, we run Test3 in which we double the dimensions
and increase resolution by calling cylinder using
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../cylinder cylout 3 20 41 346.41 400 1.0 200 1

We run as for Test2, except now center the source at z = 200. In this case, the
domain area agrees with the true area to five digits: 1.6242 ·106 vs. 1.6246 ·106.
Now, the sum of the total energy deposited is 0.273095 · 1012 cal, which gives
a relative error of 2.8/2.73095 - 1. = 0.0253, i.e., 2.5% instead of 8.6%, as in
Test2. Also, the sum of the energy deposited on each end is 0.0678336 ·1012 cal.
Hence, each end receives 0.0678336/0.273095 = 0.2484 instead of 0.25, i.e., a
0.6% error instead of the 2.5% error in Test2.

3 Timings, summary

If cityray is run using the option timings, a separate outfile cityray.timings
displays the time (in sec) for various code processes. The file’s last line shows
how much time the main loop took. From the respective files:

Test1:Main loop took 0.876718

Test2:Main loop took 12.117986

Test3:Main loop took 220.167262

The ratio of Test2/Test1 equals 13.822 and is expected. Test2 models the
fireball as a disk divided into 13 separate equal area point sources.

The Test3/Test2 ratio equals 18.1686 and is larger than one would at first
expect. Test2 and Test3 discretize the domain into 3120 and 18960, resp., i.e.,
Test3 has 6.08 more triangles than Test2. Naively one would expect only 6×
more work. For this simple example, that is true since every boundary triangle
“sees” the entire disk. However, that is not the case in general since the ray-trace
algorithm follows a tree-like structure to determine if the line joining source to
triangle is not blocked by another triangle, as would be the case if one structure
shadows another. Thus, the 18-fold increase is due to two processes. One is a
6-fold increase due to the number of boundary triangles. Another is a 3-fold
increase due to traversing a larger tree structure.

We conclude with two comments. One pertains to the ratio of the expected
total energy deposited vs. the expected value: 80% × thermal partition × yield.
The simulations were done using only 10 (nonuniform) time steps that integrated
over the Power(time) curve. Hence, some error should be expected.

The second comment explains the source of the 8.6% error for the total
emitted energy in Test2. In method raytrace_disk, the energy deposited on
triangles is computed as follows. For each triangle, the fireball is approximated
as a disk co-centered with the fireball. The disk is oriented so its normal points
to the triangle center. The disk is divided into 13 equal area patches (sub-
sources), each modeled as a point source located at the subsource center. Each
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subsource is a diffuse source with strenth equal to 1/13 of the total. Each sub-
source deposits energy based on the solid angle it generates that envelops the
triangle in question. However, the solid angles for each subsource may differ,
and significantly so, for triangles near the source. Hence, the sum of energy de-
posited by the subsources need not equal the energy deposited by a single point
source at the fireball center. The error is significantly reduced for triangles far
from the source, as shown in the results for Test3 vs. Test2.
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